
South East Asian J. of Mathematics and Mathematical Sciences
Vol. 19, No. 3 (2023), pp. 481-492

DOI: 10.56827/SEAJMMS.2023.1903.37 ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

UNIFORMLY CONVEX AND STARLIKE PROBABILITY
DISTRIBUTION

Saurabh Porwal, Poonam Dixit*, Ritesh Agarwal** and
Akhilesh Singh**

Department of Mathematics,
Ram Sahai Government Degree College,

Bairi-Shivrajpur, Kanpur - 209205, (U.P.), INDIA

E-mail : saurabhjcb@rediffmail.com

*Department of Mathematics,
U.I.E.T. Campus, C.S.J.M. University,

Kanpur - 208024, (U.P.), INDIA

E-mail : dixit poonam14@rediffmail.com

**Department of Computer Applications,
U.I.E.T. Campus, C.S.J.M. University,

Kanpur - 208024, (U.P.), INDIA

E-mail : riteshagarwal@csjmu.ac.in, akhileshsingh.83@gmail.com

(Received: May 16, 2023 Accepted: Nov. 30, 2023 Published: Dec. 30, 2023)

Abstract: The purpose of the present paper is to introduce k− uniformly convex
and k− uniformly starlike discrete probability distributions and obtain some re-
sults regarding moments, factorial moments and moment generating functions for
these distributions.

Keywords and Phrases: Probability Distribution, k− uniformly convex func-
tion, k− uniformly starlike functions.

2020 Mathematics Subject Classification: 97K50, 30C45.



482 South East Asian J. of Mathematics and Mathematical Sciences

1. Introduction and Preliminaries
The probability distribution is one of the most important topics in statistics.

A theoretical probability distribution is a law according to which distinct values
of the random variables are distributed with specified probabilities according to
certain rule which can be expressed mathematically. These law can be generate on
the basis of given conditions or on the basis of the experimental observations. If a
random variable X takes a finite number or countably infinite number of values,
then X is called discrete random variable which takes values x1, x2, x3, . . . with
probabilities p1, p2, p3, . . . and let p(X = xi) = pi. Then pi is called the probability
mass function if it satisfies the following conditions
(i) pi ≥ 0
(ii)

∑
i pi = 1.

Some important examples of the discrete probability distribution are discrete uni-
form distribution, Bernoulli distribution, Binomial distribution, Poisson distribu-
tion, Negative Binomial distribution, Geometric distribution, Hypergeometric dis-
tribution, Beta-Binomial distribution and Zeta distribution etc. For detailed study
of these probability distributions, one may refer to the following excellent text book
by Gupta and Kapoor [6].

Recently, Porwal [10] introduce starlike and convex type probability distribution
by using the definition of starlike and convex functions and obtain results regarding
moments, factorial moments, mean, variance and moment generating functions.
Further, these results were generalized by Porwal and Magesh [11]. These papers
establish a co-relation between probability distribution and Geometric Function
Theory and opens up a new direction of research in the field of univalent functions.
In [10], first author of this paper introduced Starlike and Convex type probability
distribution in the following way.

Let A represent the class of functions f of the form

f(z) = z +
∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and satisfy
the normalization condition f(0) = f ′(0) − 1 = 0. Further, we denote by S the
subclass of A consisting of functions f of the form (1.1) which are also univalent
in U.

A function f(z) of the form (1.1) is said to be starlike of order α, (0 ≤ α < 1),
if it satisfy the following condition

ℜ
{
zf ′(z)

f(z)

}
> α, z ∈ U.
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Also, a function f(z) of the form (1.1) is said to be convex of order α, (0 ≤ α <
1), if it satisfy the following condition

ℜ
{
1 +

zf ′′(z)

f ′(z)

}
> α, z ∈ U.

The classes of all starlike and convex functions of order α are denoted by S∗(α)
and C(α), respectively.

For α = 0, the classes of S∗(α) and C(α) reduce to the classes of starlike
functions S∗ and convex functions C, respectively.

The classes of S∗(α), C(α), S∗ and C were studied earlier by Robertson [12]
and Silverman [14], (see also [3]). Bharti et al. [1] introduced the subclasses of k-
uniformly convex functions of order α and corresponding class of starlike functions
as follows:

A function f ∈ A of the form (2) is in k − UCV (α), if and only if

Re

{
1 +

zf ′′(z)

f ′(z)

}
≥ k

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣+ α, (1.2)

where 0 ≤ k < ∞, 0 ≤ α < 1 and z ∈ U . Using the Alexander transform we can
obtain the class k−Sp(α) in the following way f ∈ k−UCV (α) ⇔ zf ′ ∈ k−Sp(α).

It is worthy to note that for α = 0, the classes k−UCV (α) and k−Sp(α) reduce
to the classes k−UCV and k−Sp of S consisting, respectively, of functions which
are k-uniformly convex and k-starlike in U. The class k − UCV was introduced
by Kanas and Wisniowska [7], where its geometric definition and connections with
the conic domains were considered. The class k − Sp was investigated in [8]. In
particular, when k = 1, we obtain 1−UCV ≡ UCV and 1−Sp ≡ Sp, where UCV
and Sp are familiar classes of uniformly convex functions and parabolic starlike
functions in U , respectively (see, for detailed study Goodman [4], [5], Ma and
Minda [9], Rønning [13] and Subramanian et al. [15]), (see also [2]).

To define k− uniformly convex and k− uniformly starlike probability distribu-
tion, we need the following lemmas:

Lemma 1.1. [1] A function f ∈ A is in k − UCV (α), if it satisfies the following
condition

∞∑
n=2

n[n(1 + k)− (k + α)]|an| ≤ 1− α. (1.3)

Lemma 1.2. [1] A function f ∈ A is in k − Sp(α), if it satisfies the following
inequality

∞∑
n=2

[n(1 + k)− (k + α)]|an| ≤ 1− α. (1.4)
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In 2019, Porwal [10] introduced the starlike and convex type probability dis-
tribution by using the definition of starlike and convex function in the following
way:

The starlike distribution of order α is defined for a function f(z) of the form
(1.1) with condition that an ≥ 0 and satisfy the condition that

∞∑
n=2

(
n− α

1− α

)
an = 1. (1.5)

The probability mass function of a starlike distribution of order α is as follows

p (n) =

{
0, if n = 0,1

n−α
1−α

an, if n ⩾ 2.
(1.6)

Since p(n) ≥ 0 and
∑∞

n=0 p(n) = 1.
Similarly, the convex distribution of order α associated with the function f(z)

of the form (1.1) with condition that an ≥ 0 and satisfy the condition that

∞∑
n=2

(
n(n− α)

1− α

)
an = 1. (1.7)

The probability mass function of a Convex distribution of order α is as follows:

p (n) =

{
0, if n = 0,1

n(n−α)
1−α

an, if n ⩾ 2.
(1.8)

Since p(n) ≥ 0 and
∑∞

n=0 p(n) = 1.
For α = 0, these distributions are called starlike and convex distributions.

These distributions are defined for the function f(z) of the form (1.1) satisfying
the condition (1.6) and (1.7) with α = 0. Therefore, it is natural to ask whether
these distributions are defined for the functions satisfying the following coefficient
inequalities

∑∞
n=2

(
n−α
1−α

)
an < 1, and

∑∞
n=2 n

(
n−α
1−α

)
an < 1. In the present paper

we attempt to fill this gap, by introducing k−uniformly convex type probability
distribution of order α associated with the function f(z) of the form (1.1) with
condition that an ≥ 0 and satisfy the condition (1.3). The condition (1.3) can be
re-written in the following form

∞∑
n=2

(
n(n(1 + k)− (k + α))

1− α

)
an = 1− ϵ, 0 ≤ ϵ < 1. (1.9)
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The probability mass function of k−uniformly convex distribution is defined as

p (n) =

{
0, if n = 0,1

n(n(1+k)−(k+α))
(1−ϵ)(1−α)

an, if n ⩾ 2.
(1.10)

Since p(n) ≥ 0 and
∑∞

n=0 p(n) = 1.

Here p(n) is a probability mass function.

Similarly, the probability mass function of k− uniformly starlike distribution is
defined as

p (n) =

{
0, if n = 0,1

n(1+k)−(k+α)
(1−ϵ)(1−α)

an, if n ⩾ 2.
(1.11)

By specializing the parameters in these distributions, we have

1. For k = 0, ϵ = 0, then these distributions reduce to the convex and starlike
type probability distributions of order α studied by Porwal [10].

2. For k = 0, α = 0 and ϵ = 0 then these distributions reduce to the convex and
starlike type probability distributions studied by Porwal [10].

In the present paper, we obtain the results regarding moments, factorial mo-
ments and moment generating functions. We improve and generalize the results of
[10].

Definition 1.1. If X is a discrete random variable which can take the values x1,
x2, x3, . . . with respective probabilities p1, p2, p3, . . . then expectation of X, denoted
by E(X), is defined as

E(X) =
∞∑
n=1

pnxn. (1.12)

Definition 1.2. The rth moment of a discrete probability distribution about X = 0
is defined by

µ
′

r = E(Xr).

Definition 1.3. The rth factorial moment of the discrete probability distribution
is defined as

µ
′

(r) =
∞∑
n=0

n(n− 1) . . . (n− r + 1)p(n) =
∞∑
n=0

n(r)p(n).
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Definition 1.4. The moment generating function (m.g.f.) of a random variable
X is denoted by MX(t) and defined by

MX(t) = E(etX). (1.13)

2. Main Results
Our first theorem gives the first four moments of k− uniformly convex proba-

bility distribution about the origin.

Theorem 2.1. The first four moments µ
′
1, µ

′
2, µ

′
3 and µ

′
4 of the k− uniformly

convex probability distribution are defined by the relation

1. µ
′
1 =

1
(1−ϵ)(1−α)

[
(k + 1)f

′′′
(1) + (2k + 3− α)f

′′
(1) + (1− α)(f ′(1)− 1)

]
.

2. µ
′
2 =

1
(1−ϵ)(1−α)

[
(k + 1)f iv(1) + (5k + 6− α)f

′′′
(1) + (4k + 7− 3α)f

′′
(1)

+(1− α)(f ′(1)− 1)] .

3. µ
′
3 =

1
(1−ϵ)(1−α)

[(k + 1)f v(1) + (9k + 10− α)f iv(1)+

(19k + 25− 6α)f
′′′
(1) + (8k + 15− 7α)f

′′
(1) + (1− α)(f ′(1)− 1)

]
.

4. µ
′
4 =

1
(1−ϵ)(1−α)

[(k + 1)f vi(1) + (14k + 15− α)f v(1) + (55k + 65− 10α)f iv(1)

+(65k + 90− 25α)f
′′′
(1) + (16k + 31− 15α)f

′′
(1) + (1− α)(f ′(1)− 1)

]
.

Proof. By using the Definition 1.2, we have

1.

µ
′

1 =
∞∑
n=0

np(n)

=
∞∑
n=2

n.

(
n(n(1 + k)− (k + α))

(1− ϵ)(1− α)

)
an

=
1

(1− ϵ)(1− α)

[
(k + 1)

∞∑
n=2

n(n− 1)(n− 2)an+

(2k + 3− α)
∞∑
n=2

n(n− 1)an + (1− α)
∞∑
n=2

nan

]
=

1

(1− ϵ)(1− α)
[(k + 1)f ′′′(1) + (2k + 3− α)f ′′(1) + (1− α) (f ′(1)− 1)] .
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2.

µ
′

2 =
∞∑
n=0

n2p(n)

∞∑
n=2

n2

(
n(n(1 + k)− (k + α))

(1− ϵ)(1− α)

)
an

=
1

(1− ϵ)(1− α)

[
(k + 1)

∞∑
n=2

n(n− 1)(n− 2)(n− 3)an+

(5k + 6− α)
∞∑
n=2

n(n− 1)(n− 2)an+

(4k + 7− 3α)
∞∑
n=2

n(n− 1)an + (1− α)
∞∑
n=2

nan

]
=

1

(1− ϵ)(1− α)

[
(k + 1)f iv(1) + (5k + 6− α)f ′′′(1)+

(4k + 7− 3α)f ′′(1) + (1− α) (f ′(1)− 1)] .

3.

µ
′

3 =
∞∑
n=0

n3p(n)

∞∑
n=2

n3

(
n(n(1 + k)− (k + α))

(1− ϵ)(1− α)

)
an

=
1

(1− ϵ)(1− α)

[
(k + 1)

∞∑
n=2

n(n− 1)(n− 2)(n− 3)(n− 4)an

+ (9k + 10− α)
∞∑
n=2

n(n− 1)(n− 2)(n− 3)an + (19k + 25− 6α)

∞∑
n=2

n(n− 1)(n− 2)an +(8k + 15− 7α)
∞∑
n=2

n(n− 1)an + (1− α)
∞∑
n=2

nan

]
=

1

(1− ϵ)(1− α)

[
(k + 1)f v(1) + (9k + 10− α)f iv(1)

+(19k + 25− 6α)f ′′′(1) + (8k + 15− 7α)f ′′(1) + (1− α) (f ′(1)− 1)] .
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4.

µ
′

4 =
∞∑
n=0

n4p(n)

∞∑
n=2

n4

(
n(n(1 + k)− (k + α))

(1− ϵ)(1− α)

)
an

=
1

(1− ϵ)(1− α)

[
(k + 1)

∞∑
n=2

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)an+

(14k + 15− α)
∞∑
n=2

n(n− 1)(n− 2)(n− 3)(n− 4)an+

(55k + 65− 10α)
∞∑
n=2

n(n− 1)(n− 2)(n− 3)an+

(65k + 90− 25α)
∞∑
n=2

n(n− 1)(n− 2)an+

(16k + 31− 15α)
∞∑
n=2

n(n− 1)an + (1− α)
∞∑
n=2

nan

]
=

1

(1− ϵ)(1− α)

[
(k + 1)f vi(1) + (14k + 15− α)f v(1)

+ (55k + 64− 10α)f iv(1) + (65k + 90− 25α)f ′′′(1)

+(16k + 31− 15α)f ′′(1) + (1− α) (f ′(1)− 1)] .

Example 2.1. The first four moments of the k−uniformly convex distribution of
order α associated with the function f(z) = z + (1−ϵ)(1−α)

n[n(k+1)−(k+α)]
zn are

µ
′

1 = n.

µ
′

2 = n2.

µ
′

3 = n3.

µ
′

4 = n4.

Remark 2.1. If we put ϵ = 0, k = 0 in Theorem 2.1, then we obtain the first four
moments of convex distribution of order α studied by Porwal [10].

Remark 2.2. If we put ϵ = 0, k = 0, α = 0 in Theorem 2.1, then we obtain the
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first four moments of convex distribution studied by Porwal [10].

Remark 2.3. If we put k = 1, α = 0 in Theorem 2.1, then we obtain the first four
moments for the class uniformly convex functions studied by Subramanian et al.
[15].

Theorem 2.2. The rth factorial moment of the k− uniformly convex probability
distribution is given by the relation

µ
′

(r) =

{
µ

′
1, if r = 1

dr

dzr
[(k + 1)z2f ′′(z) + (1− α)zf ′(z)]

(z=1)
, if r ⩾ 2

.

Proof. By using the Definition 1.3, we have

µ
′

(1) = µ
′

1,

and

µ
′

(r) =
∞∑
n=0

n(r)p(n)

=
∞∑
n=0

n(r)n

(
n(1 + k)− (k + α)

(1− ϵ)(1− α)

)
an

=
1

(1− ϵ)(1− α)

∞∑
n=2

[
(k + 1)n2n(r)an − (k + α)nn(r)an

]
=

1

(1− ϵ)(1− α)

dr

dzr
[
(k + 1)z2f ′′(z) + (1− α)zf ′(z)

]
.

Example 2.2. The rth factorial moment of the k−uniformly convex distribution
of order α associated with the function f(z) = z + (1−ϵ)(1−α)

n[n(k+1)−(k+α)]
zn is

µ
′

(1) = n,

and

µ
′

(r) =

{
n(n− 1) . . . (n− r + 1) , if r ≤ n

0, if r > n
.

Theorem 2.3. The moment generating function of the k−uniformly convex dis-
tribution of order α is given by

MX(t) =
1

(1− ϵ)(1− α)

[
(k + 1)e2tf ′′(et) + (1− α)

(
etf ′(et)− et

)]
.
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Proof. By using the Definition 1.4, we have

MX(t) = E(etX)

=
∞∑
n=0

etnp(n)

=
∞∑
n=0

etn
(
n(n(1 + k)− (k + α))

(1− ϵ)(1− α)

)
an

=
1

(1− ϵ)(1− α)

∞∑
n=2

[
(k + 1)n(n− 1)etnan + (1− α)nane

tn
]

=
1

(1− ϵ)(1− α)

[
(k + 1)e2tf ′′(et) + (1− α)

(
etf ′(et)− et

)]
.

Example 2.3. The moment generating function of the k−uniformly convex dis-
tribution of order α associated with the function f(z) = z + (1−ϵ)(1−α)

n[n(k+1)−(k+α)]
zn is

MX(t) = etn.

Theorem 2.4. The first four moments µ
′
1, µ

′
2, µ

′
3 and µ

′
4 of the k− uniformly

starlike probability distribution are defined by the relation

1. µ
′
1 =

1
(1−ϵ)(1−α)

[
(k + 1)f

′′
(1) + (1− α)(f ′(1)− 1)

]
.

2. µ
′
2 =

1
(1−ϵ)(1−α)

[
(k + 1)f

′′′
(1) + (2k + 3− α)f

′′
(1) + (1− α)(f ′(1)− 1)

]
.

3. µ
′
3 =

1
(1−ϵ)(1−α)

[
(k + 1)f iv(1) + (5k + 6− α)f

′′′
(1)+

(4k + 7− 3α)f
′′
(1) + (1− α)(f ′(1)− 1)

]
.

4. µ
′
4 =

1
(1−ϵ)(1−α)

[(k + 1)f v(1) + (9k + 10− α)f iv(1)+

(19k + 25− 6α)f
′′′
(1) + (8k + 15− 7α)f

′′
(1) + (1− α)(f ′(1)− 1)

]
.

Proof. The proof of above theorem is much akin to that of Theorem 2.1, hence
we omit the details involved.

Remark 2.4. If we put k = 1, α = 0 in Theorem 2.1, then we obtain the first four
moments for the class uniformly starlike functions studied by Subramanian et al.
[15].

Theorem 2.5. The rth factorial moment of the k− uniformly starlike probability
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distribution is given by the relation

µ
′

(r) =

{
µ

′
1, if r = 1

dr

dzr
[(k + 1)zf ′(z)− (k + α)f(z)]

(z=1)
, if r ⩾ 2

.

Proof. The proof of above theorem is much similar to that of Theorem 2.2, hence
we omit the details involved.

Theorem 2.6. The moment generating function of the k− uniformly starlike
distribution of order α is given by

MX(t) =
1

(1− ϵ)(1− α)

[
(k + 1)etf ′(et)− (k + α)f(et)− (1− α)et

]
.

Proof. The proof of above theorem is much akin to that of Theorem 2.4, therefore
we omit the details involved.

Remark 2.5. If we put ϵ = 0, k = 0 in Theorems 2.2-2.6, then we obtain the
corresponding results of Porwal [10].

Remark 2.6. If we put ϵ = 0, k = 0, α = 0 in Theorems 2.2-2.6, then we obtain
corresponding results of Porwal [10].

Remark 2.7. If we put k = 1, α = 0 in Theorems 2.2-2.6, then we obtain the
corresponding results for the classes uniformly convex and uniformly starlike func-
tions studied by Subramanian et al. [10].

3. Conclusion
In this paper we introduce uniformly Convex and uniformly starlike discrete

probability distribution. We obtain results regarding Moments, Factorial moments
and Moment generating functions for these distributions. Since uniformly convex
and uniformly starlike functions are play an important role in geometric function
theory so we hope that these distributions also play an important role in geometric
function theory as well as probability theory. This paper opens up a new and
interesting direction of research in univalent functions and probability distributions.
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